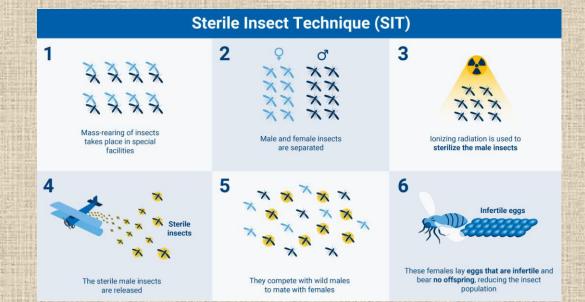

«Основы производства радиоактивных изотопов»

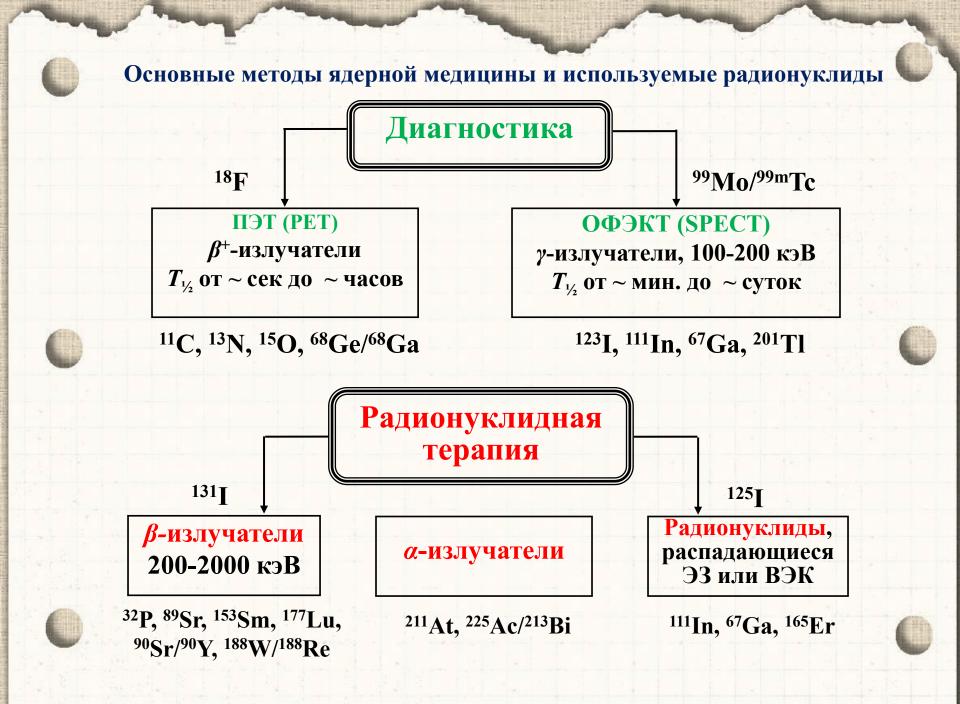
Лекция 10. Применение радиоактивных изотопов.

и.о. доцента кафедры теоретической и ядерной физики PhD Зарипова Ю.А.


Применение радиоактивных изотопов

Выявляемость трещин в угловых швах в зависимости от направления основного пучка для излучений Со-60 и Ir-192.

Ионизирующее излучение используется для облучения насекомых, после чего они теряют способность к размножению. Метод широко применяется для борьбы с насекомыми, заражающими сельхозкультуры (метод стерильных самцов).



Ядерная медицина - раздел клинической медицины, в котором для диагностики и лечения используются радионуклидные фармацевтические препараты (РФП).

Области применения (на примере США):

- ✓ Кардиология 46% от общего числа диагностических исследований;
- **✓ Онкология** (радиобиология опухолей) 34%;
- ✓ Неврология 10%.

Ядерная медицина потребляет свыше половины радиоактивных изотопов в мире.

Радионуклидная диагностика in vivo и in vitro

Радионуклидная диагностика основана на внешней радиометрии излучения, исходящего из органов и тканей после введения РФП непосредственно в организм пациентов.

По отношению к человеческому телу различают:

диагностику *in vivo* (в теле) - *радиофармпрепараты* вводятся внутрь человеческого организма, а измерительные приборы фиксируют излучение (эмиссионная томография);

диагностику *in vitro* (в пробирке) - у человека отбираются образцы тканей и помещаются в пробирку, где они взаимодействуют с радиофармпрепаратами (радиоиммунный анализ).

МЕТОДЫ ВИЗУАЛИЗАЦИИ В ЯДЕРНОЙ МЕДИЦИНЕ

Радионуклидная диагностика основана на внешней радиометрии излучения, исходящего из органов и тканей после введения РФП непосредственно в организм пациентов.

- ✓ <u>Планарная сцинтиграфия</u> ц функциональной визуализации, в котором получат перное изображения
- © объёмного (3-х мерного) распределения РФП в организме.;
- ✓ Однофотонная эмиссионная компьютерная томография (ОФЭКТ) получение 3-х мерного изображения распределения гамма-активного РФП, состоящего из отдельных изображений 2-х мерных аксиальных срезов
- ✓ <u>Позитронная эмиссионная томография</u> (ПЭТ) получение 3-х мерного изображения распределения позитрон-активного РФП.

Закрытые источники в ядерной медицине

Закрытые источники используются для калибровки и контроля качества оборудования (Na-22, Mn-54, Co-57, Co-60, Cs-137, Cd-109, I-129, Ba-133, Am-241). Точечные источники и анатомические маркеры (Co-57, Au-195). Активность в диапазоне от 1 кБк-1ГБк. кБк-1ГБк.

Открытые источники в ядерной медицине

Нуклид	Время полураспада	Распад	Энерлетия частицы (Макс) (МэВ)	Энергия фотона (МэВ)	Макс активность (МБк)
H-3	12.4 лет	β⁻	0.016 (100%)		10
C-14	5730 лет	β-	0.155 (100%)		0.5
Na-24	15 час	β-	1.39 (100%)	1.37 (100%) 2.75 (100%)	1
S-35	87.2 дней	β-	0.17 (100%)		8
K-42	12.45 час	β-	2.0 (18%) 3.6 (82%)	1.52 (18%)	1
K-43	22 час	β	0.47 (8%) 0.83 (87%) 1.24 (3.5%) и т.д.	0.370 (85%) 0.390 (18%) 0.610 (81%) и т.д.	1
Ca-45	163 дней	β ⁻	0.25 (100%)	_ii	0.8
Ca-47	4.5 дней	β-	0.66 (83%)	0.480 (6%)	0.8
Cr-51	27.8 дней	ÉC	(100%)	0.323 (8%)	5
Fe-59	45 дней	β-	0.27 (46%) 0.46 (53%) и т.д.	1.10 (56%) 1.29 (44%) и т.д.	0.05
Co-57	270 дней	EC	(100%)	0.122 (88%) 0.136 (10%)	0.3
Co-58	71 дней	EC β ⁺	(85%) 0.47 (15%)	0.81 (101%) 0.51 (30%)	0.3
Cu-64	12.8 час	β ⁻ β ⁺ EC	0.57 (38%) 0.66 (19%) (43%)	0.51 (38%) и т.д.	20
Zn-65	64 дней	ΕC, β ⁺	(98.5%) 0.33 (1.5%)	1.115 (51%)	0.5
Se-75	121 дней	ÉC	(100%)	0.140 (54%) 0.270 (56%) и т.д.	0.4
I-125	60 дней	EC	(100%)	0.035 (8%) X (138%)	5

Открытые источники в ядерной медицине

Нуклид	Время полураспада	Распад	Энергия частицы (max) (МэВ)	Энергия фотона (МэВ)	Макс активность (МБк)
P-32	14.3 дней	β-	1.71 (100%)		200
Sr-89	50.5 дней	β-	1.46 (100%)	0.909 (1%)	150
Y-90	64.2 часов	β-	2.27 (100%)		5000
I-131	8.04 дней	β	0.33 (9%) 0.61 (87%) и т.д.	0.365 (80%) 0.640 (9%) и т.д.	20000
Er-169	9.3 дней	β-	0.03 (100%)		50
Re-186	90 часов	β	0.93 (23%) 1.07 (73%)	0.137 (10%) 0.122 (1%)	150
Au-198	2.7 дней	β	0.96 (99%) и т.д.	0.412 (96%) и т.д.	2000

Открытые источники в ядерной медицине

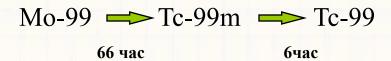
Нуклид	Время полураспада	Распад	Энергия частицы (тах) (МэВ)	Энергия фотона (МэВ)	Макс активность (МБк)
C-11	20.4 мин	β^{+}	0.39 (средн)	0.511 (A)	1000
O-15	2.2 мин	β^{+}	0.72 (средн)	0.511 (A)	3500
F-18	110 мин	β^+	0.25 (средн)	0.511 (A)	500
Ga-67	78.3 часов	EC	(100%)	X (38%) 0.185 (24%) 0.300 (17%) и т.д.	250
CEKe- 75	121 дней	EC	(100%)	0.140 (54%) 0.270 (56%) 0.280 (23%) и т.д.	10
Kr-81m	13 сек	IT		0.191 (66%)	6000
Tc-99m	6 часов	IT		0.140 (90%)	1000
In-111	2.8 дней	EC	(100%)	0.171 (91%) 0.245 (94%)	200
In-113m	1.66 часов	EC	(100%)	0.393 (64%)	20
I-123	13.2 часов	EC	(100%)	X (86%) 0.159 (83%)	400
I-125	60 дней	EC	(100%)	X (138%) 0.035 (7%)	10
I-131	8.04 дней	β	0.33 (9%) 0.61 (87%) и т.д.	0.365 (80%) 0.640 (9%) и т.д.	100
Xe-133	5.27 дней	β-	0.34 (100%)	0.081 (35%)	500
T1-201	73 часов	EC	(100%)	X (95%) 0.167 (10%) и т.д.	150

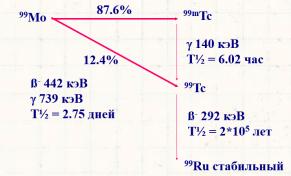
Радиотоксичность

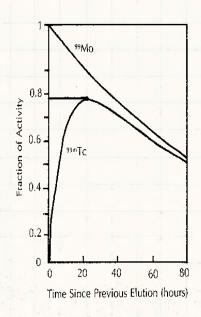
Класс А. Очень высокаяНапример, Am-241, Cf-252

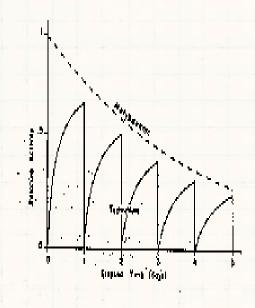
Класс В. ВысокаяНапример, Na-22, Ca-45,
Mn-54, Co-60, Sr-89, I-125,
I-131

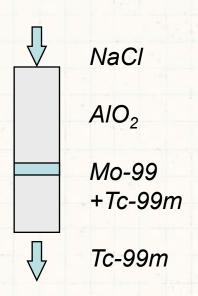
Класс С. Средняя


Например, C-14, F-18, P-32, Cr-51, Co-57, Ga-67, Se-75, Mo-99, In-111, I-123, Au-198, TI-201


Класс D. НизкаяНапример, H-3, C-11, N-13, O-15, Tc-99m, Xe-133


Применение в ядерной медицине в зависимости от типа радионуклида


Радионуклид	Диагностика	Терапия
• Чистые γ источники например; Тс-99m, In-111, Ga-67, I-123	×	(-)
• Источники позитронов например: F-18	(B ⁺) ×	-
• γ, ß- источники например: I-131, Sm-153	×	×
• Чистые В- источники например: Sr-89, Y-90, Er-169		×
• а источники например: At-211, Bi-213		×

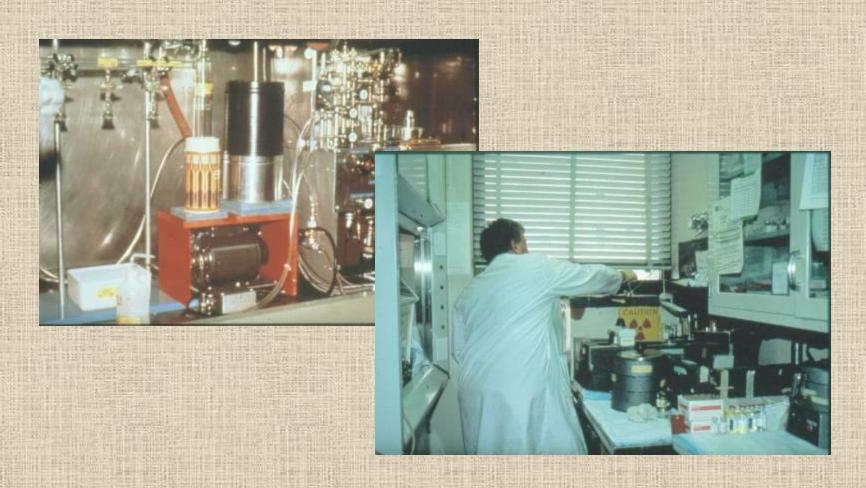

Генератор Технеция

Радиофармпрепараты

Радионуклид Фармпрепарат Орган

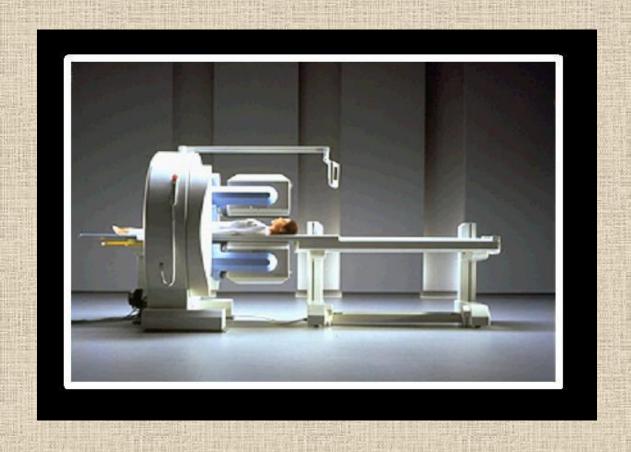
Параметр

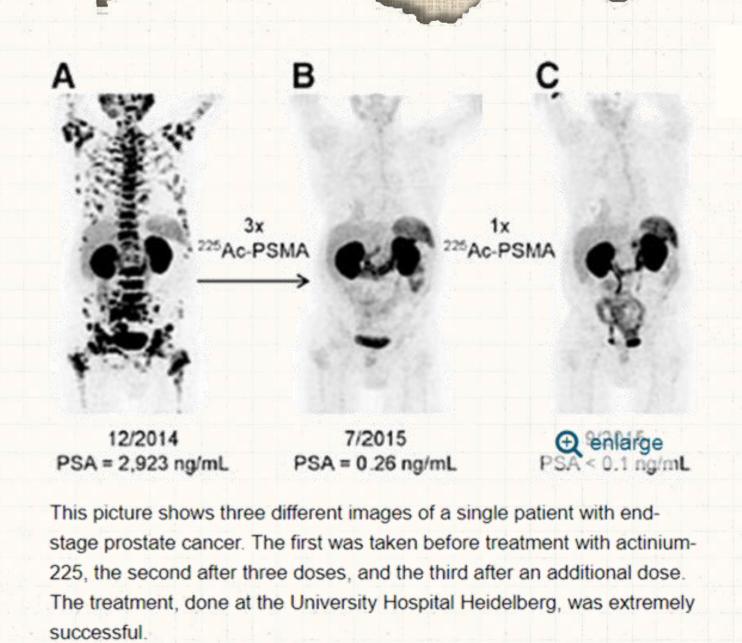
РАДИОФАРМПРЕПАРАТЫ


Радиофармпрепараты (РФП), используемые в ядерной медицине можно классифицировать следующим образом:

- •готовые к использованию радиофармпрепараты, например: ¹³¹I- MIBG, ¹³¹I-йодид, ²⁰¹TI-хлорид, ¹¹¹In-DTPA
- •наборы для быстрого приготовления радиофармпрепаратов например ^{99m}Tc-MDP, ^{99m}Tc-MAA, ^{99m}Tc-HIDA, ¹¹¹In-Октреотид
- •наборы требующие нагрева, например: ^{99m}Tc-MAG3, ^{99m}Tc-MIBI
- •препараты, требующие значительных манипуляций, например, маркировка клеток крови или синтез и маркировка радиофармпрепаратов, произведённых на месте

Подготовка и фасовка радиофармпрепаратов


Работа с радионуклидами в лаборатории



Введение радиофармпрепаратов

Обследование пациентов

Воздействие радиации на человека

1 3в вызывает изменения в крови;

2—5 Зв вызывает облысение и белокровие;

□ 30 Зв приводит к смерти в течение 30 дней в 50 % случаев

Нормы радиационной безопасности

Предел эффективной дозы

□ Группа А – 20 м3в/год

□ Группа Б – 5 м3в/год

Предел эквивалентной дозы

Орган	Доза группы А, мЗв/год	Доза группы Б, мЗв/год
Хрусталик глаза	150	37,5
Кожа	500	125
Кисти рук и стопы	500	125

Нагрузки при ОФЭКТ с 99mTc

- □ При исследовании кровообращения и выявления очагов воспаления головного мозга вводимая в/в активность 370-450 МБк
- □ эффективная эквивалентная доза при проведении оценки перфузии головного мозга 0.02 м3в/МБк
- □ после в/в введения меченых лейкоцитов 0.0165 м3в/МБк


Нагрузки при использовании ¹¹¹In

□ 111МБк длясцинциграфии□ 222МБк для ОФЭКТ

планарной

□ Эффективная эквивалентная доза 1,9*10⁻¹ м3в/МБк

СПАСИБО ЗА ВНИМАНИЕ!

